Alleviation of 1,N6-ethanoadenine genotoxicity by the Escherichia coli adaptive response protein AlkB.
نویسندگان
چکیده
1,N(6)-ethanoadenine (EA) forms through the reaction of adenine in DNA with the antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic used to combat various brain, head, and neck tumors. Previous studies of the toxic and mutagenic properties of the DNA adduct EA have been limited to in vitro experiments using mammalian polymerases and have revealed the lesion to be both miscoding and genotoxic. This work explores lesion bypass and mutagenicity of EA replicated in vivo and demonstrates that EA is neither toxic nor mutagenic in wild-type Escherichia coli. Although the base excision repair glycosylase enzymes of both humans and E. coli possess a weak ability to act on the lesion in vitro, an in vivo repair pathway has not yet been demonstrated. Here we show that an enzyme mechanistically unrelated to DNA glycosylases, the adaptive response protein AlkB, is capable of acting on EA via its canonical mechanism of oxidative dealkylation. The reaction alleviates the unrepaired adduct's potent toxicity through metabolism at the C8 position (attached to N1 of adenine), producing a nontoxic and weakly mutagenic N(6) adduct. AlkB is shown here to be a geno-protective agent that reduces the toxicity of DNA damage by converting the primary adduct to a less toxic secondary product.
منابع مشابه
Removal of N-Alkyl Modifications from N2-Alkylguanine and N4-Alkylcytosine in DNA by the Adaptive Response Protein AlkB
The AlkB enzyme is an Fe(II)- and α-ketoglutarate-dependent dioxygenase that repairs DNA alkyl lesions by a direct reversal of damage mechanism as part of the adaptive response in E. coli. The reported substrate scope of AlkB includes simple DNA alkyl adducts, such as 1-methyladenine, 3-methylcytosine, 3-ethylcytosine, 1-methylguanine, 3-methylthymine, and N(6)-methyladenine, as well as more co...
متن کاملMutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine, and 3-methylthymine in alkB Escherichia coli.
AlkB repairs 1-alkyladenine and 3-methylcytosine lesions in DNA by directly reversing the base damage. Although repair studies with randomly alkylated substrates have been performed, the miscoding nature of these and related individually alkylated bases and the suppression of mutagenesis by AlkB within cells have not yet been explored. Here, we address the miscoding potential of 1-methyldeoxyad...
متن کاملContribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein.
In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that ox...
متن کاملRepair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry
DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II)-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protect...
متن کاملAlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells
The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 3 شماره
صفحات -
تاریخ انتشار 2007